Oxidative damage to brain proteins, loss of glutamine synthetase activity, and production of free radicals during ischemia/reperfusion-induced injury to gerbil brain.

نویسندگان

  • C N Oliver
  • P E Starke-Reed
  • E R Stadtman
  • G J Liu
  • J M Carney
  • R A Floyd
چکیده

Free radical-mediated oxidative damage has been implicated in tissue injury resulting from ischemia/reperfusion events. Global cortical ischemia/reperfusion injury to Mongolian gerbil brains was produced by transient occlusion of both common carotid arteries. Protein oxidation, as measured by protein carbonyl content, increased significantly during the reperfusion phase that followed 10 min of ischemia. The activity of glutamine synthetase, an enzyme known to be inactivated by metal-catalyzed oxidation reactions, decreased to 65% of control levels after 2 hr of reperfusion that followed 10 min of ischemia. We also report that the free radical spin trap N-tert-butyl-alpha-phenylnitrone [300 mg/kg (body weight)] administered 60 min before ischemia/reperfusion is initiated, partially prevents protein oxidation and protects from loss of glutamine synthetase activity. In addition, we report a N-tert-butyl-alpha-phenylnitrone-dependent nitroxide radical obtained in the lipid fraction of the ischemia/reperfusion-lesioned brains, but there was very little radical present in the comparable sham-operated control brains. These data strengthen the previous observation utilizing in vivo-trapping methods, that free radical flux is increased during the reperfusion phase of the ischemia-lesioned gerbil brain. The loss of glutamine synthetase would be expected to increase the levels of brain L-glutamate. Thus, the oxidative inactivation of glutamine synthetase may be a critical factor in the neurotoxicity produced after cerebral ischemia/reperfusion injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Pistacia vera L. Gum Extract on Oxidative Damage during Experimental Cerebral Ischemia-Reperfusion in Rats

Oxygen free radicals may be implicated in the pathogenesis of ischemia reperfusion damage. As the antioxidant effects of some species of Pistacia have been reported, the protective effects of Pistacia vera L. gum extract (0.1-0.5 g/kg) on oxidative damage following cerebral ischemia were studied in rats. Ischemia was induced using four-vessel occlusion model and evaluated using measurement of m...

متن کامل

The Protective Effect of Antioxidant and Anti-inflammatory Nanoparticles in Renal Ischemia-Reperfusion Damage

Background& objectives: Renal ischemia-reperfusion (IR) damage occurs during renal transplantation in end-stage renal disease (ESRD) patients which activate immune responses. Inflammatory responses by increased levels of cytokines can lead to acute kidney injury (AKI) that contributes to the loss of renal grafts and graft dysfunction. The purpose of this study was to review the therapeutic effe...

متن کامل

Effect of ellagic acid on oxidative stress duo to brain ischemia/hypoperfusion in male rat

Background & Aim: Free radicals are produced in ischemic processes. Nerve damage caused by free radicals may play a role in neurological diseases and antioxidants are protective activity. Ellagic acid is a polyphenol compound with antioxidant properties which is found in fruits like pomegranate, blackberry, and all types of mulberry. This study aimed to evaluate the effect of 14 days of oral ad...

متن کامل

بررسی اثرات محافظت نورونی فولرنول در مقابل آسیب های خونرسانی مجدد بعد از ایسکمی موضعی گذرای مغز در موش صحرایی

Background and purpose: Overproduction of free radicals after brain ischemia exacerbates brain infarction and edema specifically during early reperfusion. The scavenging property of water-soluble fullerene derivatives is proven, so, the aim of this study was to evaluate the effects of fullerenol nanoparticles on brain infarction and edema, especially oxidative damages during reperfusion in an e...

متن کامل

The effects of adenosine injection after of brain ischemia reperfusion injury on gene expression of NF-kB/p65 and activity level of ROS in male Wistar rats

Background: Unit of p65 is one of the subunits of NF-κB and its phosphorylation by stress oxidative causes activation of NF-κB. The aim of present study was to investigate the effects of adenosine injection after brain ischemia reperfusion injury on gene expression of NF-κB /p65 and Reactive Oxygen Species (ROS) in hippocampus tissue of male wistar rats. Methods: 40 male wistar rats were rando...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 87 13  شماره 

صفحات  -

تاریخ انتشار 1990